Growth and Regions Connectivity
Tahir Dhindsa
tahirdhindsa@yahoo.com

Integrating regions as single economic unit is a vision of the future economic development paradigm, supported by the international financial institutions and the G-20 countries. Connecting countries in a region for mutual trade of goods and energy is the integral part of vision. South Asia is one of the regions, which can become the world’s ‘engine of growth’ and emerge prosperous as a result.

Connecting regional energy resources to consumption centers is nowhere else as important as in the South Asian Region, which is a home to about one third of the world population. Tied with the lack of energy transportation spur lines, South Asia can emerge thriving and peaceful. The new markets to the sagging Europe and America are facing fiscal cliffs much of which is due to poor trade performance. Trade and energy go hand-in-hand, and South Asia, which is portrayed as ‘shining’ on the heels of its young population, can use geography to its advantage.

Peace with ‘Simple Harmonic Equilibrium,” is the first and the last condition for this magic to happen, which means all major disputes are maintainable without any external or internal pressure or support of people on either side.

The volatile prices of energy stocks, primarily hydrocarbon are responsible for hedge trading and speculation, no wonder that political and military conflicts anchored around natural energy resources. These resources are fiscal in nature and modern economies seek fiscal prudence from prudent energy policies, which is true even for a unit as small as an urban household. After the Middle East, South Asia and Central Asia are the prime examples of those political and military conflicts fueled by presence of petroleum resources. However, if solutions for removal of petroleum wealth to the consumption market are implemented and made functional, lifting these regions out of poverty and, sustaining growth can become reality, on which global peace is dependent. In recent years, some pipelines have been built to create regional energy theaters. Oil pipelines from Central Asia to China and Turkey across the Black Sea are two major examples of viability of the idea.

South Asian Energy Corridor
The Central Asian States, including Kazakhstan, Turkmenistan, Uzbekistan, Kyrgyzstan and Tajikistan were the part of former Soviet Union in the past. These states are rich in oil and gas, having huge proven reserves. According to the data, accepted by (Mohg. Delay, Cohen) the region has 8.2 billion tons of proven oil reserves and 8.4 Tcm of natural gas reserves. Kazakhstan and Uzbekistan are accepted as oil rich countries whereas Turkmenistan is a country rich in gas reserves.

On the other side, South Asia is deficit in energy but picking up on economic growth front. Connecting South Asian energy consumption centers to the energy rich Central Asian states is a win-win solution. It can bring economic growth to these Central Asian States, through oil and gas revenue, which have suffered protracted recessions. It can help continue South Asia on the path of a better economic growth and prepare the subcontinent as a future consumption market, which can support trade needed to sustain, G-8 countries at the present level. The best way to bring oil and gas to the subcontinent from the Central Asia is the proposed pipelines. Some of them have been on the energy transportation map of the world for more than two
decade, with progress on paper only. In the meantime, China National Petroleum Corporation (CNPC), through a regional consortium has completed 3,000 kilometers long oil pipeline from Kazakhstan to the autonomous region of Xinjiang in China. The project was initiated in June 1997 when CNPC signed a $4 billion investment deal with the government of Kazakhstan.

South Asian Piped Dream

At the moment, there are three principal gas pipelines, which can bring gas to the subcontinent. These are Turkmenistan-Afghanistan-Pakistan-India (TAPI) gas pipeline, Qatar-Pakistan-India (QPI) submarine gas pipeline, and Iran-Pakistan-India (IPI) gas pipeline. The QPI for the considerable portion of its designed running length has to be laid down in the bed of the Arabian Sea; the option, at the present level of price range is too expensive to be adopted. Even after its completion, its estimated annual maintenance cost is a considerable portion of the profit margin, the host consortium may find feasible to earn. This leaves the region with two other major options, i.e. Iran-Pakistan-India (IPI) and Turkmenistan-Afghanistan-Pakistan-India (TAPI) gas pipelines.

TAPI

A Memorandum of Understanding (MoU) between the governments of Turkmenistan and Pakistan was signed on March 15, 1995 to build a gas pipeline from Daulatabad gas field in Turkmenistan to the city of Multan in southern Punjab, Pakistan. Unocal, a US company, in consortium with the Saudi oil company, Delta, prepared to start work on the project. The two companies later joined the CentGas consortium in which several international petroleum companies joined in, including the Russian petroleum giant Gazprom. Since the pipeline was to pass through the land route in Afghanistan, the country was ensured 8 per cent share in profit. Later on, in June 1998, Gazprom had relinquished its share in the project and Unocal had withdrawn in August 1998 after attacks on American Embassies in Nairobi and Dar es Salaam. The project was put on the back burner. The project has been revived after the US invasion of Afghanistan with the support of the Asian Development Bank. The bank has underwritten the project and provided risk guarantees on investment. Despite, the project has support of the International development Institutions and, the D-8 countries; there is little progress on ground. Future is grim, unless there is stability in Southern Afghanistan, which is under de facto Taliban rule for the last many decades.

The US$ 7.6 billion pipeline, with an initial capacity of 27 billion cubic meters of natural gas per year, will deliver two billion cubic meters gas to Afghanistan and 12.5 billion cubic meters, each to Pakistan and India. The capacity would be increased to 33 billion cubic meters later on, to match the future growth needs of the region, and beyond.

IPI

The governments of Iran and Pakistan started discussion on the project in 1994 and a preliminary agreement was signed in 1995. The proposed gas pipeline was designed to bring gas to Pakistan and India. India joined the project in 1999. The pipeline can initially supply 22 billion cubic meters of natural gas per year, which was expected to be raised later to 55 billion cubic meters per year. The project was supposed to be commissioned by 2013 (this year) at a cost of $ 7.5 billion. After reaching Multan, a spur line has been proposed, which will deliver gas to India. Under the gas purchase agreement, Pakistan was supposed to get gas at a price of $ 11 per MMBTU. The price is $2 per MMBTU cheaper than TAPI pipeline gas, which would provide gas at $13 per MMBTU. The Iranian gas is $7 per MMBTU cheaper than the imported LNG.

India and Pakistan in 2007, agreed at initial purchase price of $ 4.93 per million British thermal units. In 2008, Iran showed interest to expand the project further to China and in 2010 to Bangladesh. In 2008, after signing civilian nuclear deal with the US, India withdrew from the project.

Pakistan’s federal government in January this year has approved a $1.5 billion government-to-government deal with Iran for laying 785 km Pakistan segment of a pipeline in Pakistan. Iran has already completed construction of its section of the pipeline close to Pakistan’s border. However, the project remained in limbo. Now the federal cabinet has finally approved the project and a special committee has been formed to expedite it. The US has been quick again to register its concerns on the deal.

SouthAsian Consumption

In Pakistan, per capita natural gas consumption in 2010 was 229 cubic meters, whereas in India, this was only 55 cubic meters. It was 2,203-cubic meters and 2,971 cubic meters in the US and Russia. Clearly, if enough gas is supplied to the subcontinent, it will benefit immensely. Needs of the region are such that it can accommodate supply of gas from both the proposed pipelines. But, nothing can be achieved on the ground unless there is a political and security consensus in the region where the probabilities of United States to become an important stakeholder are evident.
Connectivity, Growth and Trade in Pakistan
Dr. Vaqar Ahmed
vaqar@sdpi.org

It comes as no surprise that in today's modern world, state of information and communications technology (ICT), and transport infrastructure together make two important determinants of internal and external trade efficiency.

In our consultations with the business community on the subject of granting of MFN status to India, most noted that Pakistan's private sector had the capacity to adapt to various non-tariff barriers in India. However, the real irritants that raised their transactions costs were the lack of reliable transport, warehousing and storage infrastructure inside Pakistan. Several locations with in Pakistan are also distant on account of adverse security situation.

Let us now turn to some losses in quantitative terms. More than 30% of agricultural output is currently wasted due to inadequate farm to market roads, lack of cold storage facilities and obsolete and underpowered trucking fleet. With truck operating speeds on main corridors only half the speeds in Europe and productivity of Pakistan Railways freight services only 1/8th and 1/3rd of China’s and India’s respectively (World Bank, 2011), it not only takes longer but also costs more leading to significant price differentials in different markets.

We should also mention here that the operational mismanagement at the various trade-related government departments exacerbate the above mentioned deficit in connectivity infrastructure. One such example is the recent breakdown in WEOC software which controls the computerized clearance of import and exports from Karachi. This has cause losses to exporters, importers, shipping and insurance companies. Furthermore many of the exporters noted that their clients have refused to renew future contracts due to such uncertainties in export clearance.

What are the regulators up to in Pakistan? While we desperately need a regulatory appraisal in Pakistan, however in this piece we keep our discussion limited to ICT and transport infrastructure. National Logistics Cell, Pakistan International Airlines, and Pakistan Railways are all monopolies in their own sectors which are being run by the same civil service that is also responsible for regulation in these sectors. Opening up these sectors for the private sector through pure-private enterprise, public-private partnership arrangement, and outright privatization of state-owned enterprises in connectivity infrastructure can help in the longer run. We have seen this in the success of telecommunication sector in Pakistan which has after entry of private sector attracted record high foreign direct investment, technology transfer and ultimately created pro-poor jobs.

The lack of strong consumer protection organizations has also implied that there has been a weak demand
for reforms in these sectors. This pull factor is essential in the longer run in order to bring the government machinery under accountability in terms of tactical operations and monitoring in terms of efficiency targets. The civil society led organizations usually also ensure a minimum quality control.

In the transport sector some realistic balance is also required in terms of public sector investments. For example recent evaluation of public sector development programmes, commissioned by the Planning Commission reveals that road sector has been subsidized at the cost of other transport options in the country. Even with in a single sub-sector of transport such as road or rail subsidies tend to crowd out the private sector. The state owned enterprises in transport sector never had a longer term investment strategy due to which one sees large amounts of Pakistan Railway's land either lying idle or grabbed by land mafia. The trucking sector has also been demanding a dedicated national level policy. The denial to roll out this policy has resulted in this sector not being recognized as a full-fledged industry.

Finally let us take up the customs and standards testing infrastructure at the border check posts which is so important if Pakistan wants increased trade openness for growth. It is well known that customs service does not share the enthusiasm of regional trade. Their rent-seeking habits have yet to undergo the much desired transformation. Even at the federal level, organizations such as the Engineering Development Board exercise substantial powers in restraining imports and particularly those that are desired as inputs in the industrial sector. Their manner of regulating imports is synonymous to the licence raj seen in pre-partition India.

Regarding the standards testing mechanism at the border, SDPI teams carrying out survey of trade in fruits and vegetables across Wagah-Attari border were informed that most of the trade in this sector continues to remain informal due to the lack of presence of Plant departments on both sides of the border. The representatives of Plant departments are supposed to check the quality and health standards of goods coming inside the country.

One hopes that going forward the government will revive the National Trade Corridor project which was aimed at plugging the above mentioned gaps. Also essential is to drive this project from the Prime Minister's office rather than the Planning Commission so that top political leadership can take ownership and expedite the pace of work on seamless internal connectivity.

Economic Benefits of Telecom Connectivity in South Asia
Brig. (R) Mohammad Yasin
Yasin@sdpi.org

According to the United Nations geographical region classification, South Asia comprises the countries of Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. By some other definitions, Iran, Myanmar and Tibet are also included in this region. However, due to space and time limitations the impact of telecommunications (telcom) connectivity on the economy of Pakistan, India, Sri Lanka and Bangladesh is covered in this article.

According to Harsha de Silva, Ayesha Zain-ud-din and Dimuthu, Ratnadewakara (2008), "The economic as well as social benefits from such access can, in theory enable people to graduate from poverty and also contribute more widely to development. Thus, it can be argued that inequality in access to telecom services can lead to limitations in fighting poverty." They however claim that the benefits of enhanced telecom connectivity have not been seen across the board. It is hard to agree with the argument, because the economic and social benefits of enhanced telecom connectivity have positively impacted the economy of the countries of the region.

The major reason for the enhanced telecom connectivity was the regulatory reforms in the regional countries. This article highlights how such reforms contributed to the economies of the region.

Telecom Regulatory Reforms Impact the Economy of South Asia
During the last two decades, the regulatory reforms in developing countries have opened up new avenues of investment, business, employment and economic development. Regions across the globe have witnessed a vast change in the regulatory and market structure of their telecom sectors. In particular, cellular technologies and information technologies have

<table>
<thead>
<tr>
<th>Regional Telecom Indicators – South Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
</tr>
<tr>
<td>Pakistan</td>
</tr>
<tr>
<td>India</td>
</tr>
<tr>
<td>Bangladesh</td>
</tr>
</tbody>
</table>

Source: PTA, TRAI, ITU, AT Capital Research
* for 2007, ** for 2008
revolutionized the concepts of communications. Telecom in South Asia has been a tremendous success, both in terms of subscribers and socio-economic benefits. Both Pakistan and India rank among the top ten countries in the world in terms of subscribers. Pakistan started to chart out its major policy reforms in 1993 with the introduction of private players in the telecom sector while India allowed the same in earlier. Pakistan enacted the Telecom Act in 1996 which paved the way for the establishment of an independent telecom regulator, Pakistan Telecommunication Authority (PTA). India established its own telecom regulator, Telecom Regulatory Authority of India (TRAI) in 1997 while Bangladesh constituted ‘Bangladesh Telecommunication Regulatory Commission’ through its Telecom Act in 2001.

The economic impact of telecom reforms in South Asia has been far reaching. With exponential subscriber growth and substantial fiscal benefits, telecom has been one of the strongholds of every South Asian country’s economy. The table above provides an overview of telecom developments in South Asian region for the years 2005 and 2009. Pakistan leads in the teledensity and comparative subscriber growth among its neighboring countries during the reported period. Since telecom reforms were at their apex during this era in these countries, investment rose substantially over time. India being the biggest country in South Asian region, reported highest investment figures of US$ 69.7 billion in 2009. Investment growth has been impressive for Pakistan and Bangladesh as well. Similar is the case with total revenues but Pakistan has the highest comparative revenue growth among its peers.

Pakistan

Liberalization of telecom sector in proved the telecom access to the people of Pakistan which had significant impact on Pakistan economy in terms of value addition, investment, and employment generation. Telecom penetration in the country has increased by manifold since the liberalization of the sector and teledensity has reached 68%, highest among its peer countries. Gross Value Addition in telecom sector has increased tremendously as well since the liberalization of the sector as shown below.

Investment in Telecom

Operators continued to invest in infrastructure development to get more share of subscribers in a competitive environment. Though investment in the sector in 2010-11 has declined compared to previous years, it may be attributed to the fact that cellular market has matured over the years with most of the area already covered by the cellular mobile companies. Another reason for this decline could be that the substantial taxes stop investors to further expand their infrastructure. In the years since liberalization, telecom sector has attracted record inflows of FDI. During the last five years, telecom sector received over US$ 4.5 billion FDI which has a significant share (25%) in the total FDI in the country during this period.

Revenue to Government

Telecom sector is contributing a handsome amount in national exchequer through taxes and duties. Despite difficult economic conditions in the country, during the last six fiscal years, telecom contribution in terms of taxes was more than Rs. 627 billion.

Source: Central Board of Revenue and Pakistan Telecommunication Authority.

Note: PTA’s contributions comprise of all its receipts including Initial and Annual License Fee, Annual Spectrum Administrative Fee, USF and R&D Fund Contributions, Numbering Charges, License Application Fee, etc. Others include custom duties, WH Tax and other
taxes. Major source of government revenue from telecom sector is the collection of GST. During the year 2010-11, telecom sector has deposited Rs. 52 billion in the head of GST to Federal Bureau of Revenue, Rs. 7.18 billion as Activation Tax on new mobile connections, Rs. 11.9 billion as PTA deposits and Rs. 45.2 billion in lieu of custom duties, WHT and other taxes.

India
India's telecom sector has been doing exceptionally well in the past decade. Its structural and institutional reforms have provided tremendous growth opportunity in this sector. The first reforms in Indian telecommunications sector began in 1980s when the private sector was allowed in telecommunications equipment manufacturing. In 1985, Department of Telecommunications (DOT) was established. After 1991 liberalization in Government's policies, the telecom sector allowed various private players to enter into the Indian market. Earlier, this sector was operating under public sector giants like Bharat Sanchar Nigam Limited (BSNL), Mahanagar Telephone Nigam Limited (MTNL) and Videsh Sanchar Nigam Limited (VSNL) but after the National Telecom Policy (NTP) by the Government in 1994, many private players entered in the Indian telecommunication market.

Telecom market is regulated by Telecommunication Regulatory Authority of India (TRAI). It acts as an independent regulator of the business of telecommunications in the country which was set up in 1997 by the Government of India. Indian telecommunications is considered among the most competitive markets in the world. It had to contend with political interference, the incumbents many challenges to its authority, and accusations of ineptitude by private players.

In India's fixed line segment, the state operators (BSNL and MTNL) account for almost 90 per cent of revenues from basic services. Private sector services are presently available in selective urban areas, and collectively account for less than 5 per cent of subscriptions. However, private services focus on the business/corporate sector, and offer reliable, high-end services.

Telecom Policy Reforms
Indian National Telecom Policy 1994 spelt out five basic objectives of which two objectives availability of telephone on demand and universal service (connecting all villages were targeted to be realized by 1997. In regard to quality of service, matching 'world standard' and providing 'widest possible range of services at reasonable prices' were stated aims. Two other objectives were to make the country a major manufacturing base and exporter of telecom equipment and to ensure the country's defense and security needs. However, there were serious gaps in the policy document as regards provision of a suitable environment for entry of private service provider and on the issue of regulation. The 1994 policy was designed with the approach that services should continue to be provided largely by a strong incumbent that faced little competition. The same view seems to be reflected in the 'guidelines' for selection of private basic service operators.

The opening up of the Internet sector set the background to National Telecom Policy 1999, which was a major attempt to plug the loopholes in the 1994 policy. Recognizing the role of private investment, NTP 99 envisages multiple operators in the market for various services. Another major change has been a shift from the existing license fee system to one based on one time entry fee combined with revenue share payments.

Whereas NTP 94 only acknowledged the need to induct private participation in a big way into value added as well as basic services, and to 'ensure fair competition', NTP 99 goes further in targeting a greater competitive environment and level playing field. Other restrictions include, for instance, a limitation on sub-licensing, on transferability of shares for a specified period (i.e. five years), and the licensee being treated as a defaulter when there is a non-compliance of any license condition.
Contributions of the Telecom Industry to the Indian Economy

Contributions of the telecom industry, especially, cellular sector have been substantial in numbers over the past years. The contribution of Indian telecom sector to the growth of India’s economy is immense. It is directly contributing more than 1.5% GDP of the country, has a multiplier effect on growth because of connecting the people and business around it. The Indian Telecom had only 54.6 million telephone subscribers in 2003, the number increased to 562 million as on October 31, 2009. The increase is entirely due to the spectacular increase in wireless connections at a compound annual growth rate (CAGR) of 60% per annum since 2004. Presently India has one of the lowest tariffs in the world and is the fastest growing telecom markets in the world. Indian telecom has become the second largest wireless network in the world with more than 525.1 million wireless connections. With supportive policies, broadband subscribers grew from 0.2 million in 2005 to about 7.98 million by end-December 2009.

As economic growth of India continues to be stable around 8%, the Indian customers continue to hold the currently under-penetrated mobile technology, as the regulatory policy continues to favor investment in the sector. India’s telecom service revenue was US$ 30 billion in 2008, and Ernst and Young analysts believe it is projected to almost double to US$ 55 billion by 2012, thereby contributing over 6% to the GDP. The Indian telecom industry is on the path of continuously increasing its productivity levels. As an Economic Times survey taken for 200 companies (arranged in terms of value of output) finds that the incremental capital output ratio (ICOR), that measures the output generating capacity of incremental capital, has improved from 0.62 in 2005-06 to 0.59 in 2006-07. The Indian Telecom manufacturing has also shown growth during the recent years, which is a healthy sign for the local telecom market and country’s exports.

The cumulative revenues that have flowed to the government are already about Rs.10,000 crore from license fee and service-tax alone. The privatization of Indian cellular brought into the arena some of the most reputed business houses of the country are also biggest names in the international telecommunications industry.

Bangladesh

Bangladesh is the ninth most populous country in the world, thus offering huge potential for the telecom companies to venture into. Telecom sector of Bangladesh has experienced growth in penetration beyond expectations which had a significant impact on the economy in terms of aggregate investment, FDI and production levels. There are over 65 million cellular subscribers in Bangladesh as of September, 2010 with penetration level of about 42%.

Telecom reforms in Bangladesh started in 1989 when private operators were allowed to enter into the market by awarding four licenses including one mobile phone license. After seven years, three more licenses were issued in 1996 by the Bangladesh Government. National Telecom Policy was announced in 1998 while Bangladesh Telecommunication Regulatory Commission (BTRC), the telecom regulator was constituted in 2001. In 2002, ICT Policy was announced while Information Technology Act and Broadband Policy came in 2006.

There has been tremendous impact of these major telecom reforms on Bangladesh economy over the years. During the year 2008, Bangladesh telecom sector attracted US$ 1.2 billion worth of investment. Contribution to FDI by telecom sector reached almost 60.4% in 2010 while Telecommunication equipment worth US$ 612 million was imported during 2008. Revenues reached a respectable US$ 840 million in 2008 which was 1.5% of the GDP. In 2008, Deloitte estimated that in aggregate, telecom sector of Bangladesh has created more than 111,790 jobs till date.

Sri Lanka

Sri Lanka is a country with a population of approximately 19 million, a population density of almost 300 per km, and a per capita GDP of around $840. Economic liberalization policies initiated in 1977 by the current opposition party have been continued (and, in some cases such as privatization, accelerated) by the center-left coalition in power since 1994. Sri Lanka’s development prospects have been affected by an ethnic conflict that has continued since 1983.

Institutional reforms in telecommunications began in 1980, driven in part by the inability of the sluggish Government Department of Posts and Telecommunications to meet the demands of the newly liberalized, export-oriented economy, and were advanced in two stages. New legislation separating policy, regulatory and operational functions was enacted in 1991. In 1996-97 the legislation was amended to strengthen the regulatory agency, fixed-access competition was introduced and the incumbent operator was partially privatized.
With the end of the civil war in 2009 Sri Lanka entered what is referred to as a ‘post-conflict’ phase. By 2012 there were positive signs of a general improvement in the country’s social and economic well-being. And the telecom sector in particular is starting to build a fresh momentum.

Over the past few years the Sri Lankan economy has rebounded from the difficult state it was experiencing in 2009. The country had been hit by a balance of payments crisis in that year and needed a US$2.6 billion IMF loan to bail it out. Since then, however, the US$59 billion economy has been reporting strong economic growth - over 8% in 2011 - and the unemployment rate had hit a record low. The IMF has forecast growth of close to 7% over the 2012/2013 period.

The generally improving market environment has seen the country’s telecom sector well positioned for continuing vigorous growth. The already modern and progressive telecommunications sector is certainly high on the list of priorities for further expansion and development. This also fits well with the government’s wider agenda for national development.

A good start has been made on expansion and provision of infrastructure that is capable of providing a sophisticated level of telecommunications service to the population throughout the whole country. Extending infrastructure into the North and Eastern provinces, those parts of the country most affected by the long-running war is being given high priority. It is well recognized that the growth and development of any country’s telecom sector is necessary to provide, among other things, an impetus for national economic activity. Nevertheless, much still needs to be done to complete the build-out of the necessary national infrastructure.

Fixed-line teledensity was a healthy 17% by 2012. In 2006 teledensity stood at a relatively meager figure of less than 6%. It had reached 3.5 million (17%) by 2008. Since then growth has flattened out. A recent small boost to the numbers was aided by the widespread application of the Wireless Local Loop (WLL) platform. There is a large concentration of fixed services in the capital Colombo which has a penetration of 35%.

In the meantime, the Sri Lanka’s mobile telephone services have continued on a positive growth path. As an effective and efficient alternative to the fixed-line networks, with their earlier problems in meeting the demand for telephone services, the mobile phone quickly became a popular and essential service. The Sri Lankan mobile market was still growing at an annual rate of around 50% in 2009 as it headed towards the 60% penetration mark. However, since then subscriber growth has moderated to less than 10% per annum.

Market highlights:

1. Sri Lanka’s mobile market had reached over 19 million subscribers by mid-2012, for a mobile penetration of 91%.
2. This meant that the number of mobile subscribers had increased eightfold in just six years.
3. The leading mobile operators have commenced trials of Fourth Generation (4G) technologies with a view to launching by end-2012.
4. The country’s fixed-line market underwent a sustained period of healthy growth, reaching a subscriber penetration of 17% by 2012, but growth has leveled out in the last few years.
5. Fixed-line expansion has been boosted by the extensive application of WLL technology; WLL services comprised around three quarters of the total fixed line subscriber base by 2012.
6. The country’s internet sector remained underdeveloped, with the take up rate of broadband services being especially low; there were however signs that that was starting to change, especially with the surge in mobile broadband services.
7. Fixed broadband penetration (as a percentage of population) was still less than 2% in early 2012.
8. The government having established the National Broadband Consultative Committee (NBCC) in 2010, there was little evidence of it having any great impact to date.

Sri Lanka - key telecom parameters – 2011 - 2012

<table>
<thead>
<tr>
<th>Category</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed-line services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of subscribers</td>
<td>3.61 million</td>
<td>3.66 million</td>
</tr>
<tr>
<td>Internet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of subscribers (fixed)</td>
<td>509,000</td>
<td>600,000</td>
</tr>
<tr>
<td>Mobile services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of subscribers</td>
<td>18.3 million</td>
<td>20.0 million</td>
</tr>
</tbody>
</table>

(Source: BudDeCom)